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DETERMINATION OF STRESSES AT A FIXED POINT WITH SYMMETRICAL IMPACT 

OF PLANE JETS TAKING ACCOUNT OF COMPRESSIBILITY, VISCOSITY, 

AND STRENGTH OF MATERIALS 

V. A. Agureikin and A. A. Vopilov UDC 532.522 

A method is suggested for approximate calculation of stresses at a fixed point for flow 
characterizing the existence of plane or axial symmetry, taking account of the effects of 
compressibility, viscosity, and strength. At a fixed point, additions to hydrodynamic pres- 
sure caused by the effects listed assuming smallness of them are calculated. The method 
for determining additions is based on use of an iteration method [i], where as a zero ap- 
proximation, flow of an ideally incompressible fluid is used. The addition as a result of 
compressibility is calculated in an acoustic approximation, and models for an ideally elasto- 
plastic medium and a Newtonian fluid are used in calculating the additions resulting from 
strength and viscosity, respectively. The procedure for determining corrections makes it 
possible to use more complex rheo!ogical models. A process is given in detail for calcula- 
ting corrections for the problem of impact of plane jets. Results are given for the problem 
of steady-state penetration of a plane jet into a half-space. A correction is determined 
for the velocity of a fixed point. 

The set of equations describing steady-state planar flow of a compressible medium char- 
acterized by a nonspherical stress tensor is written in the form 
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where x and y are coordinates; u and v are components of the velocity vector; p is density, 
P0 is initial density; p is pressure; sij are stress deviator components. Set (!) is written 
so that the right-hand parts of the equations are small if the effects of compressibility, 
viscosity, and strength are small. Assuming smallness for these effects in accordance with 
the iteration method in [i] at first flow is determined for the zero approximation, i.e., 
set (i) is resolved with zero right-hand parts. Then the solution of the zero approximation, 
together with the rheological model for the medium connecting stress-tensor components with 
components of the strain tensor, is used in order to calculate the right-hand parts of the 
set of equations of the first approximation 
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(variables with index 1 pertain to the determination, and with an index 0 they are found 
from the solution of the zero approximation equation). 

We consider the problem of head-on impact of plane jets with thickness 2d I and 2d 2 mov- 
ing in opposite directions (see Fig. I). The jets have the same density P0 and velocity 
modulus u~. The steady-state solution for this problem is known [2]. We use it as a zero 
approximation in calculating stresses for a fixed point. Let d z = d 2 = d. Following [3] 
we integrate the first equation of set (2) along the surface of symmetry y = 0, taking ac- 
count of boundary conditions for the first approximation v1(x, 0) = 0, ul(0, 0) = 0, uZ( ~, 
0) =--u~, pZ(~, 0) = 0, the solution of the zero approximation p~ 0) = p0u~2/2, p0(~, 0) = 
0, v~ 0) = 0, and boundary conditions for the stress deviator component sij(~, 0) = . 
As a result of integration we obtain an expression for stress tensor components Oxx ~ at0a 
fixed point in a first approximation 
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The second term in the right-hand part of relationship (3) is a correction due to compressi- 
bility, and the third is due to strength and viscosity of the medium of the impacting jets. 
The method for calculating the correction for compressibility in the general case is given 
in [4], and for our purposes, assuming smallness of v, it is possible to use an acoustic 
approximation p = c02(p - P0) (co is sound velocity). By calculating the corresponding in- 
tegral we find the correction due to compressibility: 
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Considering that p~ 0) = p0u~2/2, and by carrying out expansion into a series for small 
parameter u=2/c02, we have 

/ 3 l~ ~ (0, O) u7~/(4~2,). ( 4 )  

Now we determine the correction for a fluid with Newtonian viscosity Sxy ~ = ~(Su~ + 
8v~ (I.1 is viscosity coefficient). First we note that, from the conditions of incompres- 
sibility, potentiality, and symmetry of flow for the zero approximation it is easy to find 
the subsequent relationships with y = 0: 
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For d~ = d2 = d, by using the general solution in [2] at the surface of symmetry y = 0 we 
obtain 
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From (3), taking account of (5) and (6), we find the correction for stress as a result of 
viscosity 

q ~  : [[ h v : - -  d x :  = 2 u  - ~ ~ ' !d 
0 0 

( 7 )  

Now we move to determining the strength correction by using the solution of the zero 
approximation (6) and a model for an ideally elastoplastic medium.: 

si,; = 2g~ij in the region of elasticity. 
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(8) 

Here sij = (d/dt)(sij) is total derivative with respect to time; sij are strain-rate tensor 
components; Y0 is yield point; X is coefficient of proportionality. It is noted that sii ~ = 
0 due to flow incompressibility for the first approximation and, therefore, the strain-rate 
deviator coincides with the strain-rate tensor. Calculation of strength corrections is car- 
ried separately in regions of elasticity and plasticity by omitting in subsequent calculations 
the upper index for solving the zero approximation. We designate in terms of x, the coordi- 
nate of the boundary separating the elastic and plastic regions, and -u, is the velocity de- 
termined for this coordinate from (6). We find the coefficient of proportionality A in the 
plastic region by using a rule for plastic flow and the fluidity criterion from (8): 

( 9 )  

By substituting (9) in (8) and differentiating with respect to y, taking account of (5), 
we obtain 
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After integration we determine the correction in the region of plasticity 

(lO) 

In the zone of elasticity Hooke's law Sxy = g(~u/Sy + 3v/Sx) (g is shear modulus) is 
valid. After differentiating this relationship with respect to y, taking account of (5) 
and the steady state of flow, we obtain an equation for determining 8Sxy/Sy: 

,~ I a % f l  a,~ a~.~j ~ = O. 

Its solution satisfying boundary condition aSxv/ay(~ , 0)w 0 has the form 8Sxy/Sy = g[v" 
(u~ 2 - u2)u]/(2du~3). By integrating the solution found ~ determine the correction in the 
region of elasticity 

581 



i [( ] &":'J d , ~ = : 2 g  In 1 ' u --In2 
O ~  - i -  �9 

7:, ' 'J~ ) 
( 1 1 )  

In order to find the velocity at the boundary of the region of elasticity we integrate 
expressions for Sxx and Svv along the trajectory in the elastic region taking account of 
boundary conditions Sxy(X~0), Sxx (~, 0), and Syy(~, 0) = 0. We obtain the connection of 
stresses with velocity at the boundary of the region Sxx = -Syy = -2g in (u~/u...). From the 
condition for achieving with stresses a ring of fluidity we find the velocity'at the boun- 
dary of the elastic region 

m.. = u~ exp  ( - -  Yo/(2 l / 3 g ) ) .  ( 1 2 )  

Relationships (10)-(12) give a solution of the problem for determining the strength 
correction for pressure at a fixed point. By laying out the solution in a series for small 
parameter Y0/g, with an accuracy to terms of a higher order of smallness we find that 

Y. (Wg'l + 1]. (13) hh= Vg[ln CreT-o / 
Thus, for the problem of impact of plane jets in opposite directions corrections have 

been determined for stress at a fixed point (4), (7), and (13) due to the existence of com- 
pressibility, viscosity, and strength, respectively. 

The problem of steady-state penetration of a jet into a half-space is the limiting case 
of the problem of head-on impact of jets with d i = d = const and d 2 + ~ (see Fig. i). The 
solution of the problem at the surface of symmetry y = 0: 
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By integrating the first equation of set (2) along line y = 0 we obtain relationships for 
determining stresses at a fixed point: 
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(values with upper index j relate to the jet, and with h to the half-space). By following 
the procedure given above, we determine corrections for stresses at a fixed point for the 
flow in question: 
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(expressions for hhJ and hhh were obtained by expanding into a series for small parameter 
Y0/g)- As can be seen, strength corrections of the first approximation for a jet and for 
a half-space are different. By requiring fulfillment of the condition OxxJ(0, 0) = Oxx h (0, 0), 
this makes it possible to find the correction of the first approximation for velocity at 
a fixed point: Au = (hhh - hhJ)/(2p0u=). 

We give, without derivation, the result for spatially axisymmetrical flow describing 
superposition of potentials for steady-state uniform flow and a source of arbitrary inten- 
sity. The strength correction at the stagnation point obtained by integrating with respect 
to steady-state flow along the axis of symmetry has the form hhh = Y0[in(3g/2Y 0) + 2/3]. 
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We formulate assumptions making it possible to obtain the results given above: u~/c 0 
1 is smallness of the correction for compressibility, applicability of an acoustic approxima- 
tion, ~/(p0u~d) ~ 1 is smallness of the viscosity contribution, Y0/(p0u~ 2) << 1 is smallness 
of the correction due to strength. The assumption Y0/g ~ 1 is immaterial, and it makes it 
possible to simplify the form of the final equations. 

The approach developed for calculating corrections for the first approximation permits 
apparent generalization in the case of impact of jets with different strength properties 
since flow for the zero approximation does not depend on rheology of the jet materials. 
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EXPERIMENTAL STUDY OF VISCOUS INSTABILITY IN A POROUS MEDIUM 

O. B. Bocharov, O. V. Vitovskii, Yu. P. Kolmogorov, 
and V. V. Kuznetsov 

UDC 532.546 

Viscous instability of the displacement front in a porous medium arises when a liquid 
with a higher viscosity is displaced by a less-viscous liquid or gas. A large number of 
theoretical and experimental studies have been made of the formation and development of the 
fingers of displacing liquid that are produced in the process (see the reviews in [I, 2]). 
The displacement stability condition for neutrally wetted porous media was first obtained 
in [3]. The flow of liquids in this case occurs in different regions (piston displacement) 
and the capillary forces are taken into account in the boundary conditions at the displace- 
ment front. The nonlinear stage of development of liquid instability in the case of piston 
displacement was studied experimentally and theoretically in a Hele-Shaw cell [4]. 

When a porous medium is wetted well by one of the liquids, the two liquids flow jointly 
in porous space throughout the entire displacement region [5]. The condition for the stability 
of the displacement front against small perturbations with allowance for two-phase flow was 
given in [6]. Elsewhere [7] we showed that, in the case of unstable displacement capillary 
forces, which cause return flows of liquid in regions of high saturation gradients of the 
displacing liquid, stabilize the length of the fingers. At the same time, experimental data 
on the structure and growth dynamics of fingers of the displacing liquid in a porous medium 
during developed two-phase flow are lacking at present. 

In this communication we report the results of an experimental study of the distinctive 
features in the development of fingers of displacing liquid during unstable displacement 
under the conditions of developed two-phase flow in the displacement region. The experimen- 
tal data obtained on the structure and growth dynamics of fingers are compared directly with 
the results of numerical calculations on the basis of the Masket-Leverett model. 

The experiments were carried out on a rectangular model of a porous medium with a work- 
ing part measuring 1 x 20 x 60 cm, arranged horizontally. The working part was filled with 
quartz sand, which was then vibrocompacted with the porous state completely saturated with 
water. This made it possible to obtain a homogeneous porous medium with permeability ~I0 
~m 2 and porosity m = 0.4. After the vibrocompaction, the porous medium was dried, vacuum 
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